To implement fuzzy properties using Matlab

Aim  – To implement fuzzy properties.
Tools – MATLAB                                                                                             
Theory – Fuzzy Properties are as follows-
·         Commutative:

Ø  Union of sets is commutative: that is,
A
B = B A
Ø  Intersection of sets is commutative: that is,
A ∩ B = B ∩ A

·         Associativity:

Ø  Union of sets is associative: that is,
A
(B C) = (A B) C
Ø  Intersection of sets is associative: that is,
A ∩ (B ∩ C) = (A ∩ B) ∩ C

·         Distributivite:

Ø  Union distributes over intersection: that is,
A
(B ∩ C) = (A B) ∩ (A C)
Ø  Intersection distributes over union: that is,
A ∩ (B
C) = (A ∩ B) (A ∩ C)

·         Idempotence:

Ø  Sets are idempotent under union: that is, for all sets A,
A
A = A
Ø  Sets are idempotent under intersection: that is, for all sets A,
A ∩ A = A

·         Identity:

Ø  A = A
Ø  A = A

·         Involution:

Ø  (A ) =A

Program –
clc
a=[0.4 0.5 0.6 0.4]
b=[0.4 0.6 0.6 0.3]
c=[0.5 0.3 0.6 0.1]
fi=[0 0 0 0]

disp('=====================================================================');

disp('Comutative Law');
union=max(a,b)
union1=max(b,a)

if(union == union1)   
        disp('Comutative Law is Satisfied for Union');   
end 

inter=min(a,b)
inter1=min(b,a)
if(inter == inter1)
        disp('Comutative Law is Satisfied Intersect');   
end

disp('=====================================================================');

disp('Associativity Law');
assou=max(a,max(b,c))
assou1=max(max(a,b),c)

if(assou == assou1)
    disp('Associative Law is Satisfied for Union');
end

assoi=min(a,min(b,c))
assoi1=min(min(a,b),c)

if(assoi == assoi1)
     disp('Associative Law is Satisfied for Intersect');
end

disp('=====================================================================');

disp('Distributive Law');

disu=max(a,min(b,c))
disu1=min(max(a,b),max(a,c))

if(disu == disu1)
    disp('Distributive Law is Satisfied for Union');
end

disi=min(a,max(b,c))
disi1=max(min(a,b),min(a,c))

if(disi == disi1)
    disp('Distributive Law is Satisfied Intersect');
end


disp('=====================================================================');

disp('Idempotance Law');

ideu=max(a,a)
a
if(ideu == a)
    disp('Idempotance Law is Satisfied for Union');
end

idei=min(a,a)
a
if(idei == a)
    disp('Idempotance Law is Satisfied for Intersect');
end

disp('=====================================================================');

disp('Identity Law');

ideu=max(a,fi)
if(ideu == a)
    disp('Identity Law is Satisfied for Union');
end

idei=min(a,fi)
if(idei == fi)
    disp('Identity Law is Satisfied for Intersect');
end

disp('=====================================================================');

disp('Involution Law');

inv=(1-(1-a))
a
if(inv == a)
    disp('Involution Law is Satisfied');
end


Output –


Post a Comment

0 Comments