Aim
– To implement fuzzy properties.
Tools – MATLAB
Theory
– Fuzzy Properties are as follows-
·
Commutative:
Ø Union of sets is commutative: that is,
A ∪ B = B ∪ A
A ∪ B = B ∪ A
Ø Intersection of sets is commutative: that is,
A ∩ B = B ∩ A
A ∩ B = B ∩ A
·
Associativity:
Ø Union of sets is associative: that is,
A ∪ (B ∪ C) = (A ∪B) ∪ C
A ∪ (B ∪ C) = (A ∪B) ∪ C
Ø Intersection of sets is associative: that is,
A ∩ (B ∩ C) = (A ∩ B) ∩ C
A ∩ (B ∩ C) = (A ∩ B) ∩ C
·
Distributivite:
Ø Union distributes over intersection: that is,
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
Ø Intersection distributes over union: that is,
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
·
Idempotence:
Ø Sets are idempotent under union: that is, for all sets A,
A ∪ A = A
A ∪ A = A
Ø Sets are idempotent under intersection: that is, for all sets A,
A ∩ A = A
·
Identity:
Ø A ∪ ∅ = A
Ø A ∩ ∅= A
·
Involution:
Ø
(A
)
=A
Program –
clc
a=[0.4 0.5 0.6
0.4]
b=[0.4 0.6 0.6
0.3]
c=[0.5 0.3 0.6
0.1]
fi=[0 0 0 0]
disp('=====================================================================');
disp('Comutative
Law');
union=max(a,b)
union1=max(b,a)
if(union ==
union1)
disp('Comutative Law is Satisfied for
Union');
end
inter=min(a,b)
inter1=min(b,a)
if(inter ==
inter1)
disp('Comutative Law is Satisfied
Intersect');
end
disp('=====================================================================');
disp('Associativity
Law');
assou=max(a,max(b,c))
assou1=max(max(a,b),c)
if(assou ==
assou1)
disp('Associative Law is Satisfied for
Union');
end
assoi=min(a,min(b,c))
assoi1=min(min(a,b),c)
if(assoi ==
assoi1)
disp('Associative Law is Satisfied for
Intersect');
end
disp('=====================================================================');
disp('Distributive
Law');
disu=max(a,min(b,c))
disu1=min(max(a,b),max(a,c))
if(disu ==
disu1)
disp('Distributive Law is Satisfied for
Union');
end
disi=min(a,max(b,c))
disi1=max(min(a,b),min(a,c))
if(disi ==
disi1)
disp('Distributive Law is Satisfied
Intersect');
end
disp('=====================================================================');
disp('Idempotance
Law');
ideu=max(a,a)
a
if(ideu == a)
disp('Idempotance Law is Satisfied for
Union');
end
idei=min(a,a)
a
if(idei == a)
disp('Idempotance Law is Satisfied for
Intersect');
end
disp('=====================================================================');
disp('Identity
Law');
ideu=max(a,fi)
if(ideu == a)
disp('Identity Law is Satisfied for
Union');
end
idei=min(a,fi)
if(idei == fi)
disp('Identity Law is Satisfied for
Intersect');
end
disp('=====================================================================');
disp('Involution
Law');
inv=(1-(1-a))
a
if(inv == a)
disp('Involution Law is Satisfied');
end
Output –
0 Comments